Engineering (EGR) at Mountain Empire Community College
Distance Learning
Time of Day
Term
- EGR 120 - Introduction to Engineering
- Introduces the engineering profession, professional concepts, ethics, and responsibility. Reviews hand calculators, number systems, and unit conversions. Introduces the personal computer and operating systems. Includes engineering problem solving techniques using computer software. This course applies to career/technical education (CTE) programs. EGR 121-122 serve both transfer and CTE programs.Lecture 0-2 hours. Laboratory 0-3 hours. Total 1-4 hours per week.
1-2 credits - EGR 121 - Foundations of Engineering
- Introduces the engineering profession and its impact on society and the environment, including engineering problem solving, the engineering design process, and professional practices. Covers fundamental engineering calculations, descriptive statistics, basic spreadsheet and mathematical scripting language applications, professional ethics, teamwork, and communicationLecture 2 hours. Total 2 hour per week.
Prerequisites: ENG 111 eligible; MTH 162 or MTH 167, or equivalent; or departmental approval.2 credits - EGR 122 - Engineering Design
- Applies engineering methods to a semester-long team design project with an emphasis on engineering software involving 2D and 3D computer aided design; data modeling and analysis; and iterative programming solutions. Covers design drawings and dimensioning; spreadsheet software usage; mathematical scripting language; and professional practices.Lecture 2 hours. Laboratory 2 hours. Total 4 hours per week.
Prerequisite: EGR 121 or departmental permission.3 credits - EGR 125 - Introduction to Computer Programming for Engineers
- Introduces problem solving and implementation of computer software solutions using a high-level programming language in a structured environment. Includes concepts and practice of algorithm design, language syntax, control structures, arrays, and introduction to object-oriented programming. Covers engineering applications, such as mathematical modeling, file input and output, and basic numerical methods. The assignments in this course require mathematical problem-solving skills, algebraic modeling, and functions, and use of variables.Lecture 4 hours. Total 4 hours per week.
Prerequisites: MTH 162 or MTH 167 or equivalent; Corequisites: EGR 1214 credits - EGR 126 - Computer Programming for Engineers
- Introduces computers, their architecture and software. Teaches program development using flowcharts. Solves engineering problems involving programming in languages such as FORTRAN, PASCAL, or C++.Lecture 2-3 hours. Laboratory 1-2 hours. Total 3-4 hours per week.
3 credits - EGR 127 - Introduction to Computer Programming
- Introduces programming in a higher level language such as FORTRAN, BASIC or PASCAL, or C++ on the microcomputer. Uses the operating system, packaged software and peripheral devices. Emphasizes engineering program problem solving.Lecture 1-2 hours. Laboratory 1-2 hours. Total 2-4 hours per week.
2-3 credits - EGR 140 - Engineering Mechanics - Statics
- Introduces mechanics of vector forces and space, scalar mass and time, including S.I. and U.S. customary units. Teaches equilibrium, free-body diagrams, moments, couples, distributed forces, centroids, moments of inertia analysis of two- force and multi-force members and friction and internal forces.Lecture 3 hours per week.
3 credits - EGR 206 - Engineering Economics
- Presents economic analysis of engineering alternatives. Studies economic and cost concepts, calculation of economic equivalence, comparison of alternatives, replacement economy, economic optimization in design and operation, depreciation, and after tax analysis.Lecture 2-3 hours per week.
2-3 credits - EGR 240 - Statics
- Introduces basic concepts of engineering mechanics, systems of forces and couples, equilibrium of particles and rigid bodies, and internal forces and analysis of structures, including SI and U.S. customary units. Includes trusses, frames, machines, beams, distributed forces, friction, and centroids.Lecture 3 hours. Total 3 hours per week.
Prerequisites: MTH 263 or department permission3 credits - EGR 245 - Dynamics
- Presents approach to kinematics and kinetics of particles (and systems of particles) in linear and curvilinear motion. Includes kinematics and kinetics of rigid bodies in plane motion. Teaches Newton's second law, work-energy, and impulse-momentum methods.Lecture 3 hours. Total 3 hours per week.
Prerequisites: EGR 240 or departmental approval.3 credits - EGR 246 - Mechanics of Materials
- Introduces concepts of stress, strain, deformation, internal equilibrium, and basic properties of engineering materials. Analyzes axial loads, torsion, bending, shear and combined loading. Studies stress transformation, principal stresses, and buckling.Lecture 3 hours. Total 3 hours per week.
Prerequisites: EGR 240 or departmental approval.3 credits - EGR 251 - Basic Electric Circuits I
- Teaches fundamentals of electric circuits. Includes circuit quantities of charge, current, potential, power and energy. Teaches resistive circuit analysis; Ohm's and Kirchoff's laws; nodal and mesh analysis; network theorems; RC, RL and RLC circuit transient response with constant forcing functions. Teaches AC steady-state analysis, power, three- phase circuits. Presents frequency domain analysis, resonance, Fourier series, inductively coupled circuits, Laplace transform applications, and circuit transfer functions. Introduces problem solving using computers. Part I of II.Lecture 3 hours per week.
3 credits - EGR 255 - Electric Circuits Laboratory
- Teaches principles and operation of laboratory instruments such as VOM, electronic voltmeters, digital multimeters, oscilloscopes, counters, wave generators and power supplies. Presents application to circuit measurements, including transient and steady-state response of simple networks with laboratory applications of laws and theories of circuits plus measurement of AC quantities.Laboratory 3 hours per week.
1 credits - EGR 261 - Signals and Systems
- Covers topics including Laplace transforms and Laplace transform analysis of circuits, time and frequency domain representation of linear systems, methods of linear systems analysis including convolution and Laplace transforms, frequency domain representation of signals including frequency response, filters, Fourier series, and Fourier transforms.Lecture 3 hours per week.
Prerequisites: may be applied locally.3 credits - EGR 263 - Signals and Systems Laboratory
- Applies analysis techniques for signals and systems using software modeling and circuit analysis, comparing measurements to time- and frequency-domain analytic results; Fourier and Laplace transforms; systems properties such as linearity, time invariance and stability; convolution, transfer functions and frequency response to determine system response.1 credits
- EGR 270 - Fundamentals of Computer Engineering
- Covers digital system analysis, design, and implementation. Includes digital logic, Boolean algebra, combinational and sequential circuits, hierarchical design, and introduction to computer organization and assembly language. Features in laboratory work the use of discrete logic, programmable logic devices, and hardware description language to design, simulate, implement, validate, and document digital circuitsLecture 3 hours. Laboratory 3 hours. Total 6 hours per week.
Prerequisites: EGR 121 and either EGR 125 or CSC 2214 credits - EGR 271 - Electric Circuits I
- Covers fundamentals of electric circuits. Teaches resistive circuit analysis methods, including network theorems. Features operational amplifiers, capacitors, inductors, resistor-capacitor (RC), resistor-inductor (RL) and resistance-inductance-capacitance (RLC) circuit transient response. Introduces phasor representation of alternating current (AC) circuits. Utilizes circuit design processes, technical writing and computer software for problem solving. Includes laboratory analysis to explore course concepts. Part I of II.4 credits